

Mathenatics

Teacher's Guide

Chief Executive Officer	Gabriel Torres Messina
Editorial Director	Rosa María Núñez Ochoa
Editorial Coordinator	Yuliemy Carmona Rivas
Adaptation	Gabriel Calderón López
Cover	Adrian Trejo Luna
Design	Martha Berenice Hinojosa
Layout	Krystel Galván Hernández,
	Tania Campa González
Editorial Support	Leoncio Montiel Mejía
Translation	Yuliemy Carmona Rivas
Iconography Coordinator	Guadalupe Sánchez
Iconographics	Shutterstock, Editorial Photo,
	Photostock, Latinstock
Special Collaboration	Lilia Raull Ariza
	Juan Antonio González Macías
	Julio Arnoldo Prado Saavedra

Mathematics Teacher's Guide

```
Kells
education
Copyright
© 2017 Editorial Esfinge, S. de R.L. de C.V.
Átomo 24
Parque Industrial Naucalpan
Naucalpan Estado de México, C.P. 53489
```

ISBN:
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publisher. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First published in 2017

Every effort has been made to trace the copyright holders and we apologize in advance for any unintentional omissions. We will be happy to insert the appropriate acknowledgements in any subsequent editions.

To the Teacher

Dear Teacher

Teaching mathematics has always been challenging, but nowadays, with the growing technology invasion, it is even more difficult because students are used to getting immediate results without analysis or validity checking.

This book has the objective of accompanying your teaching through activities that promote mathematical skills, which are paramount to succeed in the international mathematics assessments: reading, verbal-linguistic, mathematizing, reasoning and strategic skills.

There are recommendations of the best teaching practices in mathematics as well as the description of the skills that students will be using during specific sessions so as to help you develop argumentative didactic planners.

We are certain that through guidance and leadership students will learn and enjoy the activities we offer in this book. And you too will enjoy facilitating mathematical content.

Table of Contents

To The Student 3
How To Use This Book 6
Unit 110
Lesson 1.1 Problem Solving Using Simple Quadratic
Equations.
Topic: Patterns and Equations 11
Lesson 1.2 Congruent or Similar Figures; PropertiesAnalysis.
Topic: Plane and Solid Figures. 16
Lesson 1.3 Triangle Congruence and SimilarityTheorems.
Topic: Plane and Solid Figures. 20
Lesson 1.4 Representations of the Same Situation. Topic: Proportionality and Functions 26
Lesson 1.5 Representation of Quadratic Variations in aNumber of Situations and Disciplines.Topic: Proportionality and Functions.29
Lesson 1.6 Probability. Complementary and MutuallyExclusive Events.
Topic: Probability Notions 33
Lesson 1.7 Design of a Survey, PopulationIdentification and Sampling.
Topic: Data Analysis and Representation 35
Evaluation 38
Unit 240
Lesson 2.1 Use of Quadratic Equations to ModelSituations and Solve them by Factorization.Topic: Patterns and Equations41
Lesson 2.2 Rotation and Translation of Figures. Topic: Plane and Solid Figures. 44
Lesson 2.3 Designs that Combine Axial and Central Symmetry, Rotation and Translation of Figures. Topic: Plane and Solid Figures. 50
Lesson 2.4 Relationships among the Areas of Squares that are Built Over the Sides of a Right-angled Triangle. Topic: Plane and Solid Figures 55
Lesson 2.5 Explanation and Use of Pythagoras'Theorem.
Topic: Measurements 58
Lesson 2.6 Probability of Occurrence for MutuallyExclusive and Complementary Events.
Topic: Probability Notions 60
Evaluation 62
Unit 3 64
Lesson 3.1 General Formula to Solve QuadraticEquations.
Topic: Patterns and Equations 65
Lesson 3.2 Triangle Congruence and Similarity Theorems.
Topic: Plane and Solid Figures. 69
Lesson 3.3 Solving Geometric Problems Using Thales' Theorem.
Topic: Plane and Solid Figures. 73
Lesson 3.4 Application of Similarity in the
Construction of Homothetic Figures.
Topic: Plane and Solid Figures. 77
Lesson 3.5 Reading and Construction of Graphs ofQuadratic Functions to Model a Numberof Situations or Phenomena.Topic: Proportionality and Functions81
Lesson 3.6 Interpretation and Construction of Graphswith Straight and Curved Segments that Model
Movement Situations, Filling out Containers, etcetera.Topic: Proportionality and Functions84
Lesson 3.7 Probability of Occurrence of Two Independent Events.
Topic: Probability Notions 88
Evaluation 90

Unit 4

Lesson 4.1 Quadratic Expression to Find the Nth Term in a Sequence.
Topic: Patterns and Equations93

Lesson 4.2 Plane Development of Right Circular Cones and Right Circular Cylinders.
Topic: Plane and Solid Figures.
Lesson 4.3 Value of the Slope of a Straight Line, Value
of the Angle Formed with the Abscissa and Quotient
of the Opposite Side and the Adjacent Side.
Topic: Measurements. 103
Lesson 4.4 Relationships of Right-angled Triangles.
Topic: Measurements.
107
Lesson 4.5 Explanation and Use of Trigonometric
Ratios: Sine, Cosine and Tangent.
Topic: Measurements. 109
Lesson 4.6 Calculation and Analysis of the Rate of Change of a Process or Phenomenon. Topic: Proportionality and Functions 113
Lesson 4.7 Mean Deviation and Range.
Topic: Data Analysis and Representation 117
Evaluation ... 120

How to use this book

In order to know how to use this book in detail, please take a look at the sections which conform the text:

General structure

Unit number: Each unit is divided in lessons.

Expected learning outcomes: What you will be able to do after finishing the unit.

Competencies: The abilities
that you will improve.

Table of contents: It includes the offlcial school curriculum program, axis and topic as well as suggested course programming.

Lesson number and title:

It helps to easily find the lessons within the text.

Axis: The mathematical \qquad category to improve.
Topic: The specific item to be studied.

Previous Knowledge:

It helps you to remember prior knowledge and to understand the new information through questions and activities.

Remember:

Notes to remind you of other previous content.

Glossary:

It defines vocabulary terms, which you may be unfamiliar with.

Pair work:

The activity to share your understanding with other classmates.

Team work:
The activity to develop mini projects within the lesson.

How to use this book

Session information: In this section, you will see the course pacing, week and session. Consider each session is fifty minutes long to cover a 40 week course and you also have the expected learning outcome per session.

SKILLS DEVELOPMENT
Reasoning skills: Abstracting data, generalizing, making inferences. Verbal-linguistic skills: Supplying appropriate justifications to a procedure, critiquing the reasoning of others. Reading skills: Interpreting mathematical information.

Evaluation of content: This is the description of how you should evaluate learning outcomes.

Rubrics: Rubrics to evaluate students' performance to develop projects.

Attendance and Evaluation

Grids: These formats will help you keep track of the evaluation procedure specially designed for the content of this book.

Summative Assessment: Unit
evaluation instruments with answer key.

Student book U1

SESSION INFORMATION

Week: 1
Session: 1
Expected Learning Outcome: Problem solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Introduce yourself, the subject, the class schedule, the grading criteria as well as the behavior agreement for peaceful classwork. (For any further information regarding the behavior agreement, look at pages 169 and 170).
Development: Students read the objectives of the unit. Check how familiar they are with the topics by using the diagnostic test that you can find at www.kells-education.co.uk or on pages 145 and 146 in this guide.

Closing: Students identify the topics in the unit they consider will be hard to understand. Then, they will make a studies plan. Ask: What do you need to do in order to understand those topics? Further practice? Mind maps? A cheating paper with formulas? Mnemonics? Have students decide on the best way to master such topics individually, and note it down.

SKILLS DEVELOPMENT

Metacognitive skills: Identifying areas of opportunity.
Reading skills: Scanning, skimming, sequencing, reading for detail.
Interpersonal skills: Introducing
themselves.

EVALUATION OF CONTENT

Check students' studies plan.

Lesson 1.1
 Problem Solving Using Simple Quadratic Equations
 Axis: Numerical Sense and Algebraic Thinking.
 Topic: Patterns and Equations.

Pair work

2) Previous knowledge

Solve the following problems and write down the answers.

- Lucius triples his son's age. In four years time, the sum of their ages will be 88 years. How old is each one now? Why? Lucius is 63 , his son is 21.63 is 21 three times, when added we get 84 , when adding 4 we get 88 .
- Describe step by step the procedure you used to calculate the result. 4 were taken from 88 , Lucius is $3 x$ if his son is x; therefore, $3 x+x=84$. Then $4 x=84$. Hence, $x=21$.
- How would you represent the problem using an algebraic expression or a quadratic expression? $3 x+x+4=88$
- Explain the algebraic expression or quadratic expression that you formulated. $3 x$ is Lucius' age, x is his son's age, 4 is added and everything equals 88 .
- Discuss your answers. Share your answers. Students develop their own answers

Individual activity

Find out the number!

James thought of the double of the square of a number. Then, he added 15 and the result was 65.
Nicola represented the problem: $x^{2}+x^{2}+15=65$

- Alex used: $2(5)(5)+15=65$
- Ivan proposed: $2(-5)(-5)+15=65$

Explain why the three procedures are correct.

\qquad
\rightarrow Remember!
Operations hierarchy to solve an arithmetic equation correctly: first, do the operations in parenthesis or brackets.

FIG. 1.1 Operations hierarchy

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematizing skills: Using symbolic, formal and technical language and operations.
Reasoning skills: Generalizing.

EVALUATION OF CONTENT

Check all of the exercises the following session.

SESSION INFORMATION
Week: 1

Session: 1

Expected Learning Outcome: Problem solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Have students work with a partner to read the questions in the section Previous Knowledge. Once they finish, elicit answers.

Development: Have students read the problem in the Individual Activity. Elicit for answers about why the three procedures are correct. Solve each problem step by step, remember that math is hard to do for young people. Have them analyze the operations hierarchy image in order to remember how to solve equations. Write down five to ten more similar examples.

Closing: Check two more examples with them in order to make sure they understand how to solve them.

Homework: Students have to finish the rest of the examples you gave.

Week: 1

Session: 2

Expected Learning
Outcome: Problem solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Draw a square on the board, just like figure 1.2. Ask students to work in pairs to answer the questions on top of the page. Check their work while walking along the classroom. Elicit answers.

Development: Have students read the section New knowledge. Ask them to find the area of the square you first drew on the board. Ask them: What's the formula to calculate the area of the square? Have a student write it on the board. Ask: Is this a cubic or quadratic equation? Why is that? Elicit answers. Ask them to read the riddle and help them analyze it. Step by step, have different volunteers write the reasoning procedure on the board.

Closing: Have students analyze the results in the table and find the correct ones, individually. Elicit answers and solve them on the board with the help of different students.

FIC. 1.2 What is a squared number?

Pair work

Analyze the following sentences and answer the questions.

- Look at figure 1.2 and explain what a squared number means. It means to multiply a number by itself, as calculating the area of a square.
- Explain what happens when we multiply two negative numbers. The result is positive because $(-)(-)=+$
- Which numbers solve the equation? Discuss it with a partner. 5 and -5 .

NEW
Knowledge
Quadratic equations represent and solve different problems in real life. To solve equations like these first we ought to use algebraic language and find the appropriate equation.

Mary invited her friends over. She told them that she lives on Independence Street and she said the riddle below to find out her house number:
"The square of a number subtracting the same number equals 132. .

- What's the house number? 12
- Describe the procedure you followed to find out the number. Some numbers were squared until the result was a little greater than 32.
- Can the result be negative? Explain your reasons to other pair. No, because streets are numbered only with positive figures.
- Share your answers with other classmates and describe the procedures you followed.
- With your teacher's help, decide which methods are correct and why.

Analyze the results in the table below. Find the correct ones.

x	0	1	2	6
$\frac{x^{2}}{2}=18$	$\frac{(0)^{2}}{2}=18$	$\frac{(1)^{2}}{2}=18$	$\frac{(2)^{2}}{2}=18$	$\frac{(6)^{2}}{2}=18$
$\frac{0}{2} \neq 18$	$\frac{1}{2} \neq 18$	$\frac{4}{2} \neq 18$	$\frac{36}{2}=18$	

12

SKILLS DEVELOPMENT

Reasoning skills: Abstracting data, generalizing, making inferences.
Verbal-linguistic skills: Supplying appropriate justifications to a procedure, critiquing the reasoning of others.
Reading skills: Interpreting mathematical information.

EVALUATION OF CONTENT

Check that students at random can find the solutions to the equations.

Check table 1.1 and complement table 1.2. Once you have finished, compare your work with a partner and discuss the differences you find.
$\left.\left.\begin{array}{|c|cc|}\hline \text { Verbal Language } & \text { Algebraic Language } \\ \hline \text { The square of a number minus the same number } \\ \text { equals } 90 .\end{array}\right] \begin{array}{cc}x^{2}-x=90\end{array}\right]$ Table 1.1

Table 1.2

Individual activity

Let's work! Analyze the following situation.

Half the square of a number is 18 .
Which number is that?
The first thing to do is to change verbal language into algebraic language and then, formulate the equation.
Which of the following equations represents the situation?

$$
\frac{x}{2}=18 \quad \frac{x^{2}}{2}=18 \quad \frac{x}{2^{2}}=18
$$

Using a square root to solve equations

The extraction of roots is the inverse operation of exponentiation.
When $x^{2}=n$, where n is any real number, then $x= \pm \sqrt{n}$. All positive numbers greater than 0
have two square roots and can be:
a) Exact square roots

A root is exact when we find a square elevated number to be exactly the same radicand, without remainder. Look at figure 1.3.

b) Non entire square roots

A square root is not entire when the radicand is not a perfect square
Square root of 56 :

$$
+\sqrt{56}=7.48 \text { and }-\sqrt{56}=-7.48
$$

When to use the property of a square root? To simplify the result, we may write it: $\pm 7.48 \mathrm{It}$ is used to solve equations in the following way:

$$
x^{2}-100=0
$$

SKILLS DEVELOPMENT

Reasoning skills: Discovering relations.
Mathematical skills: Using formal operations, attending to precision.

EVALUATION OF CONTENT

Students should be able to solve exact and non exact square roots correctly.

Week: 1

Session: 3

Expected Learning
Outcome: Problem
solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Write on the board three quadratic equations. Ask students to write with words how the equations are read. Elicit answers in total class.

Development: Have students read table 1.1 and analyze it along with them. Tell students to complete table 1.2 individually. Ask for the answers at random and elicit answers. Then, guide students asking questions on how to find the appropriate equation in the Individual activity.
Ask a student to write the square root of 16 in mathematical language. Step by step, explain the parts of exact square roots. Explain why figure 1.3 illustrates the square root of 16 , which is exact. Have students do at least 10 more examples, prior to moving on to nonentire square roots

Closing: Have students do at least 10 examples of non-entire square roots so that they can clearly see the differences between entire and nonentire square roots

Week: 1

Session: 4

Expected Learning Outcome: Problem solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Write two examples of exact square roots on the board. Solve them out as a total class, checking step by step that they can follow the procedure.

Development: Have students read the example on top of the page. Give students a short time to read it, analyze it along with them, and have a volunteer solve it doing the operations on the board. Have at least other five examples done on the board by students. Guide them by writing down any other piece of information they need to successfully solve the square root.
Closing: Have students do the square root algorithm by reading bullet by bullet and doing it on the board, to check exactly what to do and how to do it. Clarify any questions that students might have.
Homework: Prepare 10 to 20 similar exercises and have different students dictate them to the class and solve them for homework.

FIG. 1.4 How much does each side of the land measure?

Example:

The size of a piece of land where an exhibit will be organized is $3619 \mathrm{~m}^{2}$. A part of the land is $15 \mathrm{~m} \times 15 \mathrm{~m}$ and it is used as a conference hall. Look at figure 1.4 .
How long is each side of the land?
The steps to solve the problem are
Write the quadratic equation. Remember to translate the verbal language to algebraic language $x^{2}-225=3619$

Then, isolate the variable:

$$
x^{2}-225+225=3619+225
$$

$$
x^{2}=3844
$$

To get x calculate $\pm \sqrt{3844} \longleftarrow$ square root property
The problem has two solutions, because: (62) (62) $=3844$ and $(-62)(-62)=3844$. Therefore,

$$
x_{1}=62 \quad x_{2}=-62
$$

- Is the square root in the previous problem positive or negative?
- Thus, how many solutions does the problem have? Explain your answers.

Individual activity

Methods and techniques

Let's follow the square root algorithm with the following example.

- From right to left, the quantity is divided in periods of two (figure 1.5)
- Use a number that multiplied by itself gives 6 or the closest to it. In this case, the number is 2 , because $2 \times 2=4$.
- We take away $6-4=2$ and next to this number we take down the following period, 42 in this case. Therefore, the number becomes 242 .
- The 2 is doubled and it becomes 4 (second auxiliary line) and again the 4 is written on the third auxiliary line.
- We calculate how many times 4 is used in 24 (absolute value). In this case it's 6 , but since 4 is there, it becomes $46 \times 6=276$ and 276 is greater than 242 . Then a smaller number is given to 4 , in this case 5 forming 45 and we multiply it by 5 . The multiplication has to give a number equal to or smaller than 242 . In this case, the multiplication is 225. From 242 take away 225 , and it gives 17 .
- Next to 17 we take down the following period, 53 in this case, forming 1753. The 25 of the root is doubled, giving 50 and a number that multiplied by 50 gives a number close to 175 , which in this case is $50 \times 3=150$.
- We add 3 to the $503 \times 3=1509$.
- From 1753 take away 1509 , and it gives 244
- To check the result, we multiply the square root and add the remainder.

SKILLS DEVELOPMENT

Mathematizing skills: Using symbolic language and operations, manipulating operations, attending to precission.

EVALUATION OF CONTENT

Check the procedures they follow and the results they get.

SKILLS DEVELOPMENT

Mathematizing skills: Interpreting

 mathematical information in relation to the situation, manipulating symbolic expressions.Strategic skills: Selecting and implementing strategies.

EVALUATION OF CONTENT

Check students' answers to the activities. Make sure they all have answered the exercises.

SESSION INFORMATION

Week: 1

Session: 5

Expected Learning
Outcome: Problem solving using simple quadratic equations and personal procedures or inverse operations.

CONTENT DELIVERY

Start: Check three of the homework exercises in order to check the procedure. Have students write the procedure to follow on the board. It's important to remember that students do need lots of reinforcement in order to correctly use mathematical procedures.

Development: Give students 5 minutes to answer part 1. Check answers one by one on the board. Ask students at random for the answers. Draw the figures 1.6 and 1.7 on the board. Help them answer the questions by guiding them on how to do it on the board. Make sure everyone follows you. Follow the procedure step by step.
Closing: Take a soft, small ball with you. Students will pass it on while telling multiples of 7. If somebody makes a mistake, he will be the secretary to solve the equations on the board.
Homework: Ask students to take a protractor and set of squares the following class.

SESSION INFORMATION
Week: 2

Session: 6

Expected Learning Outcome: Construction of congruent or similar figures (triangles, squares and rectangles) and their properties analysis.

CONTENT DELIVERY
Start: Have students work individually in order to answer the questions on page 16. Give them a few minutes while you walk around the classroom. Once three people have finished, give the rest two more minutes to finish.

Development: Use a large dice in order to choose the students to answer the questions (different students will have to do so). Discuss as a class on the answers, help students draw conclusions and if necessary, students will have to restate their answers to the questions.

Closing: Ask students to tell in their own words the meaning of congruence and similarity. Then, ask students to draw in their notebooks two congruent triangles and two similar triangles using the protractor and set squares they were told to take to class.

Lesson 1.2
 Congruent or Similar Figures; Properties Analysis Axis: Figures, Space and Measurements.
 Topic: Plane and Solid Figures.

Individual activity

2) Previous knowledge

Look at the following triangles (figure 1.8) and answer the questions.

FIG. 1.8 Look at the triangles carefully.

Compare triangles A and B. What's similar? Can you say they are equal? Why?
A and B are equal since their angles are equal and their sides have exactly the same measurements.

Now, compare triangle C to triangles A and B. What do you see? Are the three triangles equal? Explain why. The three triangles have equal angles but C has larger sides. C is just similar to A and B.

Two triangles are congruent if they are equal; that is, if the sides and angles of one triangle are equal to those in the other triangle
Triangles A and B are congruent because they comply with the previous conditions.
But triangle C is just similar to the other two, because its corresponding internal angles have the same measurements and its sides are NOT equal, but proportional. This is the difference between congruence and similarity.

How can you know when two triangles are congruent and when they are not?
Students develop their own hypothesis based upon the upper triangles analysis.

16

SKILLS DEVELOPMENT

Verbal-linguistic skills: Presenting procedures, supplying appropriate justifications to a procedure, critiquing the reasoning of others.
Reasoning skills: Discovering relations, making inferences, providing and checking a justification, making conjectures.

EVALUATION OF CONTENT

Ask students at random to justify why their triangles are congruent or similar.

SKILLS DEVELOPMENT

Reasoning skills: Making conjectures, abstracting data, generalizing, discovering relations.

Mathematizing skills: Using symbolic language, understanding symbolic expressions, manipulating symbolic expressions.

FIG. 1.12 There are triangles with
the same measurements of their internal angles, but their
corresponding sides are different.

There are three universal rules to check the congruence of two triangles, which we denote:

Side-Side-Side or sss theorem

(figure 1.9)

Side-Angle-Side or sAS theorem
(figure 1.10)

Angle-Side-Angle or ASA theorem (figure 1.11)

FIG. 1.11 ASA theorem.

Be carefu! There is no AAA theorem, because we can have triangles with the same internal angle measurements, but their corresponding sides can be different as shown in the comparison between $\triangle A D E$ and $\triangle A B C$. Look at figure 1.12.

EVALUATION OF CONTENT

Students should be able to identify each theorem's application correctly.

SESSION INFORMATION
Week: 2

Session: 9

Expected Learning Outcome: Construction of congruent or similar figures (triangles, squares and rectangles) and their properties analysis.

CONTENT DELIVERY

Start: Write SSS, SAS, ASA on the board. Have students at random explain each theorem and write the justification of each one on the board.

Development: Have students read the instructions for the Individual activity. Ask a student to explain in his own words what they have to do. Then, give them a few minutes to complete the table in activity 2. Copy the table on the board and have different students complete it. Discuss the answers in total class.

Closing: Have a student read the instructions in the Teamwork activity. Have a different student explain in his own words what they have to do. Organize teams and give them two minutes to discuss. Check answers in total class. Have students finish the exercise on their own. Check answers in total class, discuss the answers if necessary and students will have to restate their answers if it were the case.

Individual activity

Use your notebook to calculate the following.

1. Consider the following rectangle with vertices $A B C D$ and identify the total number of triangles are formed. Write them using their vertices to identify them (figure 1.13).

FIG. 1.13 How many triangles are formed?

2. When you have identified the triangles in the previous figure, complete the table:

Triangle	Congruent triangle	Justification	Criterion
$\triangle A C D$	$\triangle A B D$	$\overline{A B}=\overline{C D} \Varangle D=\Varangle A, \overline{A D}=\overline{D A}$	SAS
$\triangle A C B$	$\triangle B C D$	$\overline{A C}=\overline{B D} \Varangle A=\Varangle D, \overline{A B}=\overline{C D}$	SAS
$\triangle A O C$	$\triangle B D O$	$\overline{A B}=\overline{B D} \Varangle 0=\Varangle 0, \overline{A O}=\overline{B O}$	SAS
$\triangle C O D$	$\triangle A B O$	$\Varangle A=\Varangle C, \overline{A B}=\bar{D}, \Varangle B=\Varangle D$	$A S A$
$\triangle B C D$	$\triangle A B C$	$\overline{A B}=\overline{C D}, \overline{A C}=\overline{B D}, \overline{B C}=\overline{C B}$	SSS

Team work

Check the following quadrilaterals (figure 1.14). Decide which one is congruent and explain your reasons.

- Discuss which quadrilaterals are congruent. You might want to use a graduated ruler and compass to reach your conclusions.
- Consider the following components in figure 1.15 and answer the questions.

A

If the addition of the internal angles in a triangle equals 180°, what can you say about the addition of the internal angles of a convex triangle? The sum of its internal angles is 360°.

- If we trace the diagonal $B C$, how much do the six angles measure and how much do they sum? $\triangle B A C=90^{\circ}, \triangle A B C=60^{\circ}, \Varangle A B D=30^{\circ}, \Varangle D E G=50^{\circ}$, $E D G=40^{\circ}, E G D=90^{\circ}$
- Does that condition apply to all triangles? Yes, all convex quadrilateral shapes have internal angles whose sum is 360°.

FIG. 1.15 Consider the components of the figures.

SKILLS DEVELOPMENT

Reasoning skills: Discovering relations, providing a justification, checking a justification.

Mathematical skills: Using symbolic language.

EVALUATION OF CONTENT

Students should be able to identify the theorems in different applications or examples.

Exercises and application

Individually, answer the following exercises. When you have finished, compare your answers with a partner.

1. Look at the triangles in figure 1.16, determine which are congruent and which

2. To demonstrate that the quadrilateral in figure 1.17 $\triangle A B C \equiv \triangle B C D$, means, that the triangles formed are congruent, a student determined that $A C \equiv D C$ and that the angle $C A B \equiv$ angle $B C D$ because they are right-angled triangles. What theorem was used to demonstrate this?

SAS theorem.

3. In figure $1.18, \triangle C D E$ is isosceles. C is half way between $A D$ and D is half way between $C B$. Which criterion demonstrates that $\triangle A C E \equiv \triangle B D E$? SSS
True. When homologue sides have equal measurements, ${ }^{4}$. Which of the following sentences are true and which ones are not? Explain your answers.
 angles have equal False. Even though the angles are congruent, the measurements of their sides might not be congruent.
measurements.

- Two triangles are congruent if their homologue sides have equal measurements.
- Two triangles are congruent if their respective angles are equal.
- To demonstrate that two triangles are congruent you might use the theorem AAS .
- All equilateral triangles are congruent. Why is that? False. They have to comply with the criteria ASA, SAS, or SSS.

The three triangles are congruent because of the ASA theorem
\&IG. 1.16 Which triangles are congruent according to which theorem?

FIG. 1.17 Which theorem justifies congruent triangles?

FIG. .1.18 Determine the theorem on congruence.

False. Even if the sides are congruent, the measurements of their sides might not be so.
True. Once it is recognized that two sides and their angle is equal, it is known that the rest is equal too.

SKILLS DEVELOPMENT

Reasoning skills: Making inferences, making conjectures, providing and checking a justification.

Verbal-linguistic skills: Supplying appropriate justifications, critiquing the reasoning of others.

Reading skills: Interpreting mathematical information.

EVALUATION OF CONTENT

Check that students can name the theorems and the justification on why the triangles are congruent or not.

Week: 2
Session: 10

Expected Learning

 Outcome: Construction of congruent or similar figures (triangles, squares and rectangles) and their properties analysis.
CONTENT DELIVERY

Start: Have students look at the triangles in exercise 1. Ask students: Are they similar? Are they congruent? Why is that? Discuss the answers in total class. Write the theorems on the board, as students give their reasons on why the triangles are congruent.

Development: Have students do exercises 2, and 3. Remember to segment the exercises check. Once they finish one exercise, go through the answers along with the class, and make any necessary clarifications they need.
Closing: Students are to determine which sentences are true or false and explain the reasons why they think so. Give them a few minutes to analyze and elaborate the justification. Once they finish, check answers in total class.

Homework: Students take to class a protractor and set square the following session.

SESSION INFORMATION
Week: 3

Session: 11

Expected Learning Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY

Start: Ask students to read the instructions of the Individual activity. Ask for a student at random what they have to do. Go through the answers along with the class. Critique their reasoning so that they can easily draw conclusions, remember when critiquing it is important to go step by step on the procedure so as to clarify any possible mistake or turning point.

Development: Have students read the second part of the page. Help them analyze sentence by sentence with triangles on the board.

Closing: Students will draw other different triangles in their notebooks. Have students do a similar analysis.

Lesson 1.3
Triangle Congruence and Similarity Theorems
Axis: Figures, Space and Measurements.
Topic: Plane and Solid Figures.

Individual activity

\Rightarrow Previous knowledge
Let's remember the properties of the addition of internal angles of a triangle and the properties of the angles between parallels.
Measure or calculate? Consider the following triangles (figure 1.19).

FIG. 1.19 Gauge the internal angles of the triangles.

Now that you know the measurements of the interior angles of the triangles, even considering any small margin of error, calculate:

- How compare the angle $\Varangle C B A$ according to the angle $\Varangle D E F$?
- Are they the same or different?
- How much is the sum of the interior angles in a triangle?

Then, for the previous triangles, we will have:
$\Varangle C B A+\Varangle B A C+\Varangle A C B=180^{\circ}$

Which equals:
$\Varangle C B A+84^{\circ}+63^{\circ}=180^{\circ}$
$\angle D E F+84^{\circ}+63^{\circ}=180^{\circ}$
Isolate the variable as you learned in previous courses
When simplifying we get:
$\Varangle C B A=33^{\circ}$ and $\not \boxed{ } \triangle D E F=33^{\circ}$

This reasoning, applied to any pair of triangles $\triangle A B C$ and $\triangle D E F$, will show that the angle $\Varangle C B A$ will equal the angle $\triangle D E F$, as long as each one of the rest of the angles in $\triangle A B C$ equals one in $\triangle D E F$ (figure 1.20)

FIG. 1.20 Look at the triangles carefully.

SKILLS DEVELOPMENT

Reasoning skills: Discovering relations, making conjectures, providing and checking a justification, generalizing.

Mathematical skills: Using symbolic expressions, using constructs based on definitions; attending to precision.

EVALUATION OF CONTENT

Check students can easily identify when angles are similar.

SKILLS DEVELOPMENT

Mathematical skills: Manipulating symbolic expressions, using constructs based on formal systems, modeling.
Reasoning skills: Generalizing, reasoning quantitatively.

EVALUATION OF CONTENT

Students should be able to explain the table in the section New knowledge under your guidance.

Week: 3

Session: 12
Expected Learning
Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY

Start: Copy the triangles on page 21 on the board. Ask students if they are congruent or similar and why. Have students write their reasoning on the board.

Development: Tell students to read the AA theorem, look at the triangles and say if they are similar and why. Have students practice with at least five similar examples in which they see the AA theorem applied or not.

Closing: Have students read the New knowledge table. Ask students to prepare a class in which they explain that table. Select at random a student to present it. Encourage other students to critique his reasoning using the information in the book and going step by step on their solution so as to clarify problems or possible imprecisions.

SESSION INFORMATION
Week: 3
Session: 12
Expected Learning
Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY

Start: Draw figure 1.22 on the board. Different students identify each angle and segment on the triangles.

Development: Students read sentence by sentence and analyze the triangles on the board. Guide them, but asking questions. For example: Are triangles LMN and PQR similar? Explain your reasons to saying so.

Closing: Guide them to complete the chart by solving in total class step 1, ask them questions giving two options; they will only need to discard one of the options you give. Have students analyze at least other four pairs of triangles in order to determine whether they are similar or not. (The last part of the analysis is on top of page 23).
Let's remember the definition of similar triangles: Two triangles are similar if their corresponding sides are proportional.
This indicates that the triangles $\triangle L M N$ and $\triangle P Q R$ in figure 1.21 are similar if:

$$
\frac{L M}{P Q}=\frac{L N}{P R}=\frac{M N}{Q R}
$$

Then, we know that in figure 1.21

$$
\frac{L M}{P Q}=\frac{L N}{P R}
$$

This indicates that segments $L M, L N$ and $P Q, P R$ are proportional.
Now, let's use the Reciprocal of the Theorem of Tales: If a line s cuts the triangle $\triangle P M N$ at points Q and R in such a way that segments $P Q, Q M$ and $P R, R N$ are proportional, that is $\frac{P Q}{Q M}=\frac{P R}{R N^{\prime}}$; hence, the line is parallel to segment $M N$.
In the example in figure 1.22 we know that:

$$
\frac{P Q}{P M}=\frac{P R}{P N}
$$

On the other hand, we have (figure 1.23)

$$
P M=P Q+Q M
$$

$$
P N=P R+R N
$$

If we substitute the first two equalities, we find:

$$
\frac{P Q}{P Q+Q M}=\frac{P R}{P R+R N}
$$

From this last equality, (by simple isolation), we get the following:

$$
\frac{P Q+Q M}{P Q}=\frac{P R+R N}{P R}
$$

And now, in four steps, we will see how we can get the equality of the Reciprocal of the Theorem of Tales through the previous equality.

We might conclude that segments $M N$ and $Q R$ in our example are parallels.
This is highly convenient if we apply the properties of angles in parallels: If two parallels are cut by a transversal line, then the corresponding angles are congruent (equal) (figure1.24).

SKILLS DEVELOPMENT

Mathematical skills: Interpreting mathematical information, manipulating symbolic expressions.

Reasoning skills: Discovering relations.

EVALUATION OF CONTENT

Check that students can easily represent Thales' Reciprocal Theorem.

The numbers represent angles: equal numbers stand for equal angles.
Thus, $\Varangle P Q R=\Varangle L M N$ and $\Varangle Q R P=\Varangle M N L$ (figure 1.22 go back to page 21).
And as $\Varangle R P Q=\Varangle N L M=30^{\circ}$, the internal angles $\triangle L M N$ and $\triangle P Q R$ are equal, that is, both
triangles are similar.

Group activity

Consider the example in figure 1.22 (go back to page 21). Then, answer the following questions.

- At the beginning of the problem, we found out that both triangles have an equal angle $\Varangle R P Q=\Varangle$ NLM. If their numerical value were different from 30°, would the triangles be different? Explain why.
- In your notebook, draw your own figures and change the name of the vertices. Using the figures you drew in your notebook, summarize the properties that we studied when we solved the previous example.
- Write them on the board and clarify any questions with your teacher.

We have saw in the example that two triangles, with one angle of the same value and two sides of one triangle proportional to two sides of another, are similar. The value of such angle was not relevant to reach our conclusion; it was enough to know that it was the same in both triangles. So, we can reach our second theorem on similarity:

SAS theorem: Two triangles are similar if two sides of one are proportional to two sides of the other and if the angles between them are equal (figure 1.25).

In other words if: $\frac{A B}{D E}=\frac{B C}{E F}$ and $\Varangle A B C=\Varangle D E F$, therefore $\triangle A B C \sim \triangle D E F$.
Let's analyze a similar theorem to the previous one. Consider two triangles $\triangle A B C$ and $\triangle D E F$ with a pair of proportional sides (figure 1.26), demonstrating the equality:

$$
\frac{A B}{D F}=\frac{B C}{E F}
$$

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematical skills: Interpreting mathematical objects, using constructs based on definitions.

Reasoning skills: Generalizing, making inferences.

EVALUATION OF CONTENT

Students prepare a presentation of both theorems on similarity. Choose at random somebody to explain each theorem the following class.

Week: 3

Session: 13

Expected Learning
Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY

Start: Write parts of Thales' reciprocal theorem and ask students how to represent it in a triangle. Check answers in total class.

Development: Divide the group in teams and have them read the instructions in the group activity. Ask students to explain what they have to do in their own words. Have students read the bullets and make clear any piece of information you consider is necessary. Check they are on task while walking around the classroom. Check their answers.

Closing: Ask students to find the first theorem on similarity in previous pages (page 21) and copy it in their notebooks, have a student write it on the board. Ask students to represent it. Check answer in total class. Then, ask a student to read the second theorem on similarity. Ask students to read it slowly and explain it to you using figures 1.25 and 1.26.

SESSION INFORMATION

Week: 3

Session: 14

Expected Learning
Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY

Start: Have different students present the first and second theorems on similarity. Ask students at random questions about the presentations.
Development: Draw two right angle triangles on the board. Ask a student to read the instructions in the Individual activity. Read the third theorem on similarity and ask students how they would demonstrate the theorem using the triangles on the board. Guide them to demonstrate it.

Closing: Have students copy the three theorems on similarity and illustrate each one in their notebook.

Homework: Students
have to use a tape measure the following class.

- What can we say about both triangles?
- Let's suppose that the angle $\Varangle C A B \geq \Varangle B C A$ and that $\Varangle F D E \geq \npreceq D E F$ (figure 1.26). If in this case $\Varangle C A B=\npreceq F D E$, can we say that they are similar?

Individual activity

Copy the triangle $\triangle A^{\prime} B^{\prime} E$ in the following way:

- Draw the angle A^{\prime} over the angle A, in such a way that the side $A^{\prime} E$ corresponds to the side $A E$ (evidently the side $A^{\prime} B^{\prime}$ will be on the side $A F$). Remember that $\Varangle E A^{\prime} B^{\prime}=\Varangle C A B$, $A B=A^{\prime} B^{\prime}$ and $B C=E B^{\prime}$
- What happens with segments $A C$ and $A^{\prime} E$? Are they equal?
- The answer is yes, they are. Hence, the segments $B C$ and $E B^{\prime}$ are parallel as well. We can now conclude that $\triangle A B C$ and $\triangle D E F$ are similar
Summarizing, we have gotten our third and last theorem on similarity:

SSA theorem: Two triangles are similar if two sides of one are proportional to two sides of the other and if the major opposite angle of one triangle is equal to the major opposite angle of the other.

[^0]
SKILLS DEVELOPMENT

Reading skills: Interpreting mathematical information.

Mathematical skills: Using symbolic expressions, using constructs based on definitions, modeling.

Reasoning skills: Checking a justification.

EVALUATION OF CONTENT

Students have to be able to demonstrate the three theorems on similarity.

SKILLS DEVELOPMENT

Strategic skills: Selecting and implementing strategies.

Mathematical skills: Modeling, transforming a real world problem into a mathematical problem.

Week: 3

Session: 15
Expected Learning
Outcome: Explanation of triangles congruence and similarity theorems from constructions with defined information.

CONTENT DELIVERY
Start: Write the three theorems on similarity on the board. Ask students at random to graphically demonstrate each one. Clarify any question that students might have.
Development: Students analyze the problem then answer the questions. Check their answers on the board in total class.
Closing: Students have to go to the schoolyard in order to calculate how tall the flagpole is. Make sure you establish the rules to leave the classroom, check all of your students are on task and guide their practice.
Homework: Students
have to take a map of Mexico with three places they like or would like to visit and the distance between their hometown and those places (for example, Veracruz-Mexico City: 420 km).

SESSION INFORMATION
Week: 4

Session: 16

Expected Learning
Outcome: Representation analysis (graphic, tabular, and algebraic) that corresponds to the same situation. Identification of representations that correspond to proportionality.

CONTENT DELIVERY

Start: Ask students to tell three locations away from their hometown and mark them on a large map of Mexico on the board. Ask different students to read each question in the Previous knowledge box and answer each question along with the class. Guide them by using questions with two options.

Development: Individually students will analyze the graph and answer the questions. Give them a few minutes to do so. Check the answers to the questions, one by one, having different students writing the solutions on the board.

Closing: Students have to make a graph with the information of the three places they spotted in the map of Mexico, one in class, the other two for homework; in case most students did not do the homework, assign seven different locations.

Lesson 1.4
 Representations of the Same Situation
 Axis: Information Handling.
 Topic: Proportionality and Functions.

Pair work

\Rightarrow Previous knowledge Analyze the situation below and answer the questions.

Will is going to visit his family in Northern Mexico. He has to drive 800 km , which he plans to do in 15 hours at a constant speed.

- After 6 hours, how many kilometers will he have traveled? 319.9 km
- The longer he drives, what happens to the kilometers he advances? The quantity of kilometers increases.
- What procedure did you follow to answer the previous questions? Describe it

The velocity is calculated when dividing distance by time, then, the velocity is multiplied by time to know the kilometers to travel.

FIG. 1.28 Relationship between
FIG. 1.28 Relationship betwe
the liters quantity and the the liters quantity and the
distance traveled in kilometers.

GLosSARY
Independent Variable. It is the
variable that can change its value
as frequently as necessary, and
such value will not be affected by
another variable. Generally, it is
represented with the letter x
Dependent Variable. Its values
depend on a given function
and the designated values in
the independent variable. It is
represented with the letter y.

26

Individual activity

Analyze the following situation.

After 300 km , Will have to fill the gas tank. Since he knows how many kilometers he has to go, he wants to check the gas efficiency. To do so, he drew the following graphic (figure 1.28):

- What does each point in the line (figure 1.28) stand for? The relationship consumed gas vs. traveled kilometers.
- When the consumption of liters increases, what happens to the kilometers? The kilometers increase 10 units.
- What's the name of this type of relation? Directly proportional relationship.
In the example, the more liters spent, the more kilometers traveled.
- Which of the variables is dependent? Which one is independent? Explain.
- What is the proportionality constant? 10.
- How can you represent this situation with an algebraic expression? $d=10 \mathrm{~L}$

The independent variable is the gas liters; the dependent variable is the kilometers because it depends on the gasoline.

SKILLS DEVELOPMENT

Reading skills: Interpreting mathematical information.
Mathematical skills: Transforming a real world problem into a mathematical problem.
Reasoning skills: Discovering relations.
Strategic skills: Selecting and implementing strategies.

EVALUATION OF CONTENT

Students have to make three graphs using the places and map from their homework papers.

SKILLS DEVELOPMENT

Mathematical skills: Manipulating symbolic expressions, using constructs based on formal systems.

EVALUATION OF CONTENT

Students should be able to create a table of values and graph out of any given problem.

Week: 4

Sessions: 17, 18
Expected Learning
Outcome: Representation
analysis (graphic, tabular, and algebraic) that corresponds to the same situation. Identification of representations that correspond to proportionality.

CONTENT DELIVERY

Start: Two students will copy their homework graphs on the board, in case nobody has done the homework, have different students develop the distance graph on the board.
Development: Students read the New knowledge section, ask students how to build a table of values using the information from the graphs on the board; make pauses, asking them which values will be in the x axis and which ones in the y axis. Ask students to read the definition of directly proportional (write the term on the board) and students have to identify if the table of values they obtained is directly or inversely proportional and why they know that.
Closing: Give students a similar problem and have them build the table of values and graph.

SESSION INFORMATION
Week: 4

Session: 19

Expected Learning Outcome: Representation analysis (graphic, tabular, and algebraic) that corresponds to the same situation. Identification of representations that correspond to proportionality.

CONTENT DELIVERY

Start: Organize pairs. Have students analyze the table in figure 1.30 and call at random for a student to explain the proportionality between the variables. Help them out by asking two-options questions, for example:
How much does volume decrease between 10 and 5
$\mathrm{Pa}, 1 \mathrm{~cm}^{3}$ or $10 \mathrm{~cm}^{3}$? Now, how much does volume decrease between 10 and $15 \mathrm{~Pa}_{1} 1 \mathrm{~cm}^{3}$ or $10 \mathrm{~cm}^{3}$?

Development: Step by step help students answer the questions individually in exercise 2, by making two-option questions. If necessary, repeat procedures with different examples.

Closing: Students do the final activity for homework in case you do not have enough time to do it in class. Remember to ask direct questions instead of asking: Do you have any problem? (Students will always be shy to admit they don't get it!)

Exercises and application

1. In pairs, make a table of values with the data in the table (figure 1.30).

- Explain the proportionality between the variables. Discuss it with another pair.

2. With the data in figure 1.30 and the table of values you made, answer the following questions.

- If the volume increases, what happens to the pressure
- If the pressure decreases, what happens to the volume?
- If pressure is represented by P, and volume by V, what is the algebraic expression for this situation?
- What happens to the pressure if the volume triples? Explain your answer

3. Do the activities using the following situation

Mexico is one of the main producers of oil in the world. The algebraic expression that models the quantity of millions of barrels that are produced daily is: $y=2.5 x$ According to such algebraic expression, complete the following table.

| Days | 1 | 2 | 3 | 15 | 180 | 365 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barrels (in millions) | 2.5 | 5.0 | 7.5 | 37.5 | 450 | 912.5 |

- Explain with words the algebraic expression that was used: $y=2.5 x$. It means that 2.5 million barrels are produced per day.
- Which is the independent variable? Days (x).
- How many barrels are produced in Mexico annually? 912.5 million barrels.
- In your notebook make the graph that corresponds to the previous table and indicate the relationship between the two variables. Explain your answers.

4. When studying a gas mass you see that $P=\frac{30}{V}$

- Build a table of values and calculate the value of P for $V=0,1,2,3,5,6,10,15$.
- What's the algebraic expression for this situation?

SKILLS DEVELOPMENT

Mathematizing skills: Using constructs based on definitions, manipulating symbolic expressions.
Reasoning skills: Abstracting data, making inferences, making conjectures.

EVALUATION OF CONTENT

Ask for the answers to the questions. If students cannot respond correctly, go back to explain with a similar example and then ask again.

Lesson 1.5 Representation of Quadratic Variations in a Number of Situations and Disciplines

Axis: Information Handling.

Topic: Proportionality and Functions.

\# Previous knowledge

Solve the following problem and write down your answers.

Martin needs to buy an $800 \mathrm{~m}^{2}$ a piece of land. The land is rectangular and its length is twice as much as its width.

- What are the measuresments of the land? Explain how you got the result.
$20 \times 40 \mathrm{~m}$. When dividing the piece of land in halves, there are two squares of $400 \mathrm{~m}^{2}$ and $\sqrt{400}=20$.
- What's the algebraic expression that represents this situation? Explain it. $2 x(x)=800$ or $2 x^{2}=800$

Pair work
Analyze the following information and the figures below (figure1.31). Then, answer the questions.

A piece of synthetic grass has a perimeter of 24 m . Louise wants to make the best out of it. Answer the following questions in your notebook.

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematical skills: Interpreting mathematical objects or information in relation to the situation represented, manipulating symbolic expressions.

Reasoning skills: Discovering relations, making inferences.

EVALUATION OF CONTENT

Ask students to find the variables and how the variables are related in other similar situations (five to ten different problems, at least).

SESSION INFORMATION
Week: 4
Session: 20
Expected Learning
Outcome: Representation analysis (graphic, tabular, and algebraic) that corresponds to the same situation. Identification of representations that correspond to proportionality.

CONTENT DELIVERY

Start: Tell students that you have a friend who needs to buy a piece of land of 800 m 2 and explain that the piece of land he chose is rectangular; its length is twice as much as its width (draw it on the board). Help them to isolate the variables with the information you have. Help students by making two-option questions so that they can answer both questions.

Development: Draw
the three rectangles in the Pair work activity on the board. Guide your students through twooption questions in order to help them analyze the situation and therefore, answer the questions correctly.

Closing: Help them find the variables and how the variables are related by asking them, for example: How many variables are there, two or four?

SESSION INFORMATION
Week: 5

Session: 21

Expected Learning Outcome: Tabular and algebraic representation of quadratic variations, identified in different situations and phenomena in physics, biology, economics and other disciplines.

CONTENT DELIVERY

Start: Ask different students to identify the variables in quadrangular shapes, call them to the board, it is preferable to start with the ones who have a better handling of mathematical skills and move forward with the rest of the students until someone who finds math to be specially hard can successfully participate.

Development: Have students read the top of the page. Help them analyze the information step-by-step and eliciting for answers with twooption questions. Solve the first two equations in the table along with your group, little by little, eliciting for the answers in each step you develop. Then, have students complete the table and check it in total class.

Closing: Students read the note in the section New knowledge, help them understand what a function is by providing with at least other two examples of functions.

- Pay attention to the fact that a rectangle is mentioned, in which the perimeter is constant. However, we need to know the maximum possible area without changing the value of the first variable.
base \times height $=\quad \mathrm{m}^{2} \quad \mathrm{P}=24 \mathrm{~m}$

- You might help yourselves by tracing geometric representations.
- You might want to make a table to solve the problem. Make one with the base value from 1 to 11. Look at the example and continue with the table:

Base (b)	Height (h)	Perimeter $=24 \mathrm{~m}$	Area $=\mathrm{m}^{\mathbf{2}}$
x	$12-x$	2()$+2()=24 \mathrm{~m}$	$(x)(12 x-x)=12 x-x^{2}$
1	11	$2(1)+2(11)=24 \mathrm{~m}$	11
2	10	$2(2)+2(10)=24$	20
3	9	$2(3)+2(9)=24$	27
4	8	$2(4)+2(8)=24$	32
5	7	$2(5)+2(7)=24$	35
6	6	$2(6)+2(6)=24$	36
7	5	$2(7)+2(5)=24$	35
8	4	$2(8)+2(4)=24$	32
9	3	$2(9)+2(3)=24$	27
10	2	$2(10)+2(2)=24$	20
11	1	$2(11)+2(1)=24$	11

- Graph the value of the width x and the area $12 x-x^{2}$ in your notebook.

Knowledge

A function is the relation between two magnitudes. Such a relation might be demonstrated through the use of tables, graphs or algebraic expressions. Tables and graphs give a broad vision of how variables relate; hence, it will be easy to understand phenomena changes.

- In a functional relationship, the value of the dependent variable changes with the value of the independent variable.
- Are we talking about a linear function? Explain your answer.
- What does it mean that there's a negative value? Explain your answer.
- How would the graphic representation be in the Cartesian Plane? Explain your answe

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematizing skills: Understanding and using symbolic expressions, using constructs based on a formal system.

Reasoning skills: Discovering relations, making conjectures.

EVALUATION OF CONTENT

Students should be able to give a definition of functions in their own words.

Exercises and application

Solve the following problems individually. Once you have finished, compare your answers with a partner, describe your procedures, and present reasons to support your work.

A landowner and his parcel

1. A parcel is 50 m long and 30 m wide. The owner wants to enlarge it to raise his crops. He has the chance to buy part of the neighboring land and he wants his parcel to size $4800 \mathrm{~m}^{2}$. He wants to keep it a rectangle, and that's why he needs to add the same amount of land all around.

- How long is each side of the land? How can you know that?
60×80 because $60 \times 80=4800$.
- What algebraic expression represents the problem? Write it down. $(30+x)(50+x)=4800$
- How big would the land be if the owner wanted a piece of land of $6400 \mathrm{~m}^{2}$? $8000 \mathrm{~m}^{2}$? $12000 \mathrm{~m}^{2}$? $19500 \mathrm{~m}^{2}$? $90.64 \times 70.64,80 \times 100,120 \times 100,150 \times 130$
- Make a table of values for the previous data and compare it with other students. Explain your procedure.

Area of the piece of land (in m^{2})	Dimensions
6400	90.64×70.64
8000	80×100
12000	120×100
19500	150×130

A company issue
2. For a company to keep on working, it is necessary to cover minimum fixed expenses (FE). If such expenses correspond to the function:

$$
F E(x)=f(x)=x^{2}-6 x+11
$$

- What's the minimum point of this function that corresponds to the minimum fixed expenses that have to be paid to keep operating?
\rightarrow Remember!
The minimum point or apex can also be obtained with the equation
$\left(\frac{-b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right)$

SKILLS DEVELOPMENT

Reading skills: Interpreting mathematical information.

Mathematizing skills: Understanding and manipulating symbolic expressions.

Reasoning skills: Making inferences, providing a justification.

Week: 5
Sessions: 22-24
Expected Learning
Outcome: Tabular and algebraic representation of quadratic variations, identified in different situations and phenomena in physics, biology, economics and other disciplines.

CONTENT DELIVERY

Start: Write on the board: There's a program to reforest the area around the school. The trees to be planted grow 20 cm every year. We need to find when the trees will be 2.5 meters tall. Then, help students find out the answer by guiding them relate the variables: $h($ age $)=$ age $\times 20$.

Development: Now, students analyze the problem A landowner and his parcel. Get different students to respond questions in order to analyze the situation and answer the questions. You might ask students to develop the mathematical procedure on the board. Guide them step-by-step and elicit answers all the time from different students.

Closing: Students have to solve the second problem A company issue on their own.

SESSION INFORMATION Week: 5

Session: 25

Expected Learning Outcome: Tabular and algebraic representation of quadratic variations, identified in different situations and phenomena in physics, biology, economics and other disciplines.

CONTENT DELIVERY

Start: Check the answers to the problem A company issue by asking different students to develop the procedure on the board. Repeat any piece of information that you detect students cannot recognize or do easily.
Development: Students have to solve the problems A rock in the well and The Lemur population on an island individually.

Closing: Ask students to describe orally how to develop functions and when to use functions. If necessary, give students 5 to 10 more problems to solve using functions.
Homework: Students will need a coin, and dice.

- To solve the problem, make a table of values with x varying from 0 to 6 . Follow the example below.

\boldsymbol{x}	$f(x)$
x	$12-x$
0	11
1	6
2	3
3	2
4	3
5	6
6	11

The well is 1962 m . You might want to use the formula
A rock in the well
3. When you throw a rock into a well it takes 20 seconds to reach the bottom.

- Consider that $y(t)=\frac{1}{2} g t^{2}$. Make a table of values for $15 \mathrm{~s}, 30 \mathrm{~s}, 45 \mathrm{~s}$ and 60 s .

FIG 132 Lemur: any of various arboreal chiefly nocturnal prosimian primates that were formerly widespread bu are now largely confined to Madagascar and that usually have a longish muzzle, large eyes, very soft woolly fur, and a long furry tail.

The lemur population on an island
4. On an island, there are 80 lemurs (Look at figure 1.32) and the population growth rate is given by the formula:

$$
G(t)=-t^{2}+40 t+600
$$

- How long will it take for the lemur colony to reach its highest population rate? Why is that? 20 years.
- Make a table of values for $5,10,15,20,25,30,40$ and 50 years and share it with your partners.

t	Population (G)
5	775
10	900
15	975
20	1000
25	975
30	900
40	600
50	100

SKILLS DEVELOPMENT

Mathematizing skills: Transforming a real-world problem into a mathematical problem, using constructs based on formal systems, manipulating symbolic expressions.

Reasoning skills: Discovering relations, providing and checking a justification.

EVALUATION OF CONTENT

Check that students can analyze data and develop functions accordingly using the problems on pages 31 and 32.

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Reasoning skills: Discovering relations, modeling with math.

Strategic skills: Experimenting.
Mathematizing skills: Transforming a real-world problem into a mathematical problem.
\qquad

SESSION INFORMATION
Week: 6
Sessions: 29, 30
Expected Learning Outcome: Probability scales knowledge. Characteristics analysis of complementary, mutually exclusive and independent events.

CONTENT DELIVERY
Session 29
Start: Organize trios. Have students analyze the problem The Insurance Agent.

Development: Students develop the problem.

Closing: Students compare results in total class and draw conclusions.

Session 30

Start: Organize trios. Have students answer problem 1. Elicit answers in total class.

Development: Have students answer problem
2. Elicit answers in total class, encourage discussion and have some students write the answers on the board.

Closing: Have students answer problem 3.

Homework: Students

 find out the definitions of: mean, median, mode and range in statistics.Group activity

Analyze the situation and answer the questions.

The Insurance Agent
Joe Pendleton knows that every time he visits a client, he has a 20% chance (0.2 probability) of selling extended coverage insurance for a car, a 30% chance (0.3 probability) chance of selling a half coverage insurance; that is, that the insurance only covers damages but not medical care; 40% (0.4 probability) chance of selling a basic insurance; that is, a policy that just covers the person who has the accident, but the car repairs have to be fully paid by the driver and finally a 10\% (0.1 probability) chance of selling nothing.

Look at the simulation table.

Product \quad Commission | Extended coverage insurance | US\$250.00 |
| :---: | :---: |
| Half coverage insurance | US\$180.00 |
| Basic insurance | US\$100.00 |

Cut ten pieces of paper the same size and write down the products that the insurance agent sells:

- Two papers for extended coverage insurance
- Three papers for half coverage insurance.
- Four papers for basic insurance.
- One paper that says "No sales".
- Put the papers in a bag and take out five; returning the paper that you take out so as not to alter the probability percentages with each one.
- Write down in your notebook the possible earnings that the agent might make with his five appointments.
- Compare your results with other teams and discuss them with your teacher.
- Write your conclusions on the board.

Exercises and application

Make a simulation for each exercise and write down the results in your notebook. When finishing, share the results with your group and your teacher.

1. A candy factory produces lollypops in three different flavors, in the proportion of 20% strawberry, 30% chocolate and 50% vanilla. What's the probability that when packing them at random in boxes of three per three, the three lollypops are all the same flavor?
2. A student responds a 10 -question exam in which he only needs to answer True or False, but he's only sure of the answers he gives to five questions and he answers the other five questions at random. What's the probability that he gets a grade six or D ?
3. Toss a coin five times, and write down the results you get. Calculate the following probabilities and indicate if they are independent events or mutually exclusive events. Do not forget to define the sample space.

- Get heads two times.
- Get tails five times.
- The two possible events might occur.

34

SKILLS DEVELOPMENT

Mathematical skills: Using technical
language and operations.
Reasoning skills: Reasoning quantitatively.
Verbal-linguistic skills: Explaining procedures.

EVALUATION OF CONTENT

Check students' procedures and results.

Lesson 1.7 Design of a Survey, Population
 Identification and Sampling
 Axis: Information Handling.
 Topic: Data Analysis and Representation.

Pair work
\#) Previous knowledge
In Rio Frio, Estado de Puebla, Mr. Lawrence is in charge of fishponds with rainbow trout (figure 1.36). He wanted to analyze the total population in the ponds by checking two characteristics, the mass and size of the fish. He knew it would be risky and slow to get information from every single fish in the ponds because they can easily die when transported to be measured. So, one day he had the idea to register the data from fish that were taken out that very same day to make inferences from the total population in the ponds and the data he got is in the following table.

Number	Mass (g)	Size (cm)	Number	Mass (g)	Size (cm)	FIG. 1.36 The rainbow trout is commonly produced in natural ponds. It's a nutritious and delicious fish.
1	2758	52	23	1213	49	
2	2436	57	24	2703	52	
3	1811	59	25	769	31	
4	732	29	26	1971	56	
5	2371	56	27	1211	48	
6	1527	60	28	1990	52	
7	2420	58	29	1482	54	
8	949	38	30	2279	58	
9	1301	59	31	1158	46	
10	2185	52	32	1091	44	
11	2088	52	33	2311	60	
12	1037	41	34	2027	54	
13	780	31	35	852	34	
14	2556	57	36	1971	55	
15	1678	50	37	2470	51	
16	2482	57	38	794	32	
17	1060	42	39	2284	55	
18	1757	50	40	1458	52	
19	718	29	41	1989	50	
20	1204	48	42	1596	57	
21	2883	60	43	1095	44	
22	2239	59	44	1876	58	

Look for information about the mean, median, mode and range in statistics.

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematical skills: Understanding and using symbolic expressions.

Reasoning skills: Reasoning quantitatively, discovering relations.

EVALUATION OF CONTENT

Students should be able to get the mean, median, mode and range of any table of values you exemplify.

CONTENT DELIVERY

Start: Write on the board mean, median, mode and range. Ask different students to write the definition of each term on the board.

Development: Explain each term using the first five values in the table. Do it slowly, step by step and have different students do the operations on the board.

Closing: Students get the mean, median, mode and range of the following 10 values in the table.

Week: 7

Sessions: 32-34
Expected Learning Outcome: Survey or experiment design a population study. Discussion over the ways to choose a sample. Data gathering from a sample and search of convenient presentation tools.

CONTENT DELIVERY

Start: Call for some students to write the formulas to get the mean, median, mode and range on the board.

Development: Have students analyze the data and complete each table. Upon finishing each exercise, call for different students to explain and develop the problem on the board. Make any necessary clarifications.

Closing: Check students' answers up to the first half of page 37. Have students do a population study about their school, hobbies, music or sports preferences. Ask students to design the survey they want to use, check it and have students perform the population study. They will have to get the mean, median, mode and range.

Homework: The following class, they will have to present the results of their study.

\rightarrow Remember!
Statistics includes a number of techniques to analyze phenomena observations, data collection and information handling in order to obtain thorough knowledge and take better decisions. Sampling is the technique to get data from a specific population group in order to get information about a general population group. this technique is useful t ta analyze the total population behavior or characteristics.

Pair work
Now, with the table of values on the previous page and your teacher's help complete the following tables and cake graph.

- Ask your teacher to help you remember how to obtain statistical data to fill out the following table:

Statistics	Mass (g)	Size (cm)
Mean	1717.29	48.43
Median	1971	52
Mode	1784	52
Range	$2883-718=2165$	$60-29=31$

- Now, Mr. Lawrence has a clear idea of the fishponds population, but he knows he can make this information even clearer. So, he made the following data grouping, called strata.
- Based upon previous knowledge, complete the following table:

Mass Strata	Frequency	Relative frequency	Percentage
$\mathbf{1 . 7 0 0 \mathrm { g } \text { to } 1 0 0 0 \mathrm { g }}$	7	7 /total $=0.16$	(Relative frequence) $\times 100=16 \%$
2.1001 g to 1500 g	11	0.25	25%
3.1501 g to 2000 g	10	0.23	23%
4.2001 g to 2500 g	12	0.27	27%
5.2501 g to +	4	0.09	9%
TOTAL	44	1.0	100%

- Make a bar graph with the frequency results (figure 1.37)

- Make a bar graph with the relative frequency results (figure1.38).

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematical skills: Understanding and using symbolic expressions.

Reasoning skills: Reasoning quantitatively, discovering relations.

EVALUATION OF CONTENT

Call for students' books and notebooks at random to check that students can follow the procedures.

- Complete the cake graph below writing the corresponding percentage in each wedge (figure 1.39).

700 g to 1000 g

- 1001 g to 1500 g
- 1501 g to 2000 g

■ 2001 g to 2500 g

- 2500 g and more

FIG. 1.39 Percentage.

Once you get the three graphs, answer the following questions about the population of rainbow trout:

- What population group predominates in the fishponds, according to the sample?
- What's the percentage that represents this stratum?
- What's the smallest population stratum living in the fishponds?
- Which are the most common fish to be caught?
- Now, follow the same procedure to analyze the data about the size of the fish
- Take notes in your notebook and make the corresponding graphs for frequency, relative frequency and percentage.
- Answer the questions that Mr. Lawrence asked according to the results.
- Compare your results with those of other classmates
opulation. It is the total group of
people or other kind of elements that have common characteristics bour which from whom certain
information is required
Sample. It is the subgroup of selected elements or people from a population that is to be analyzed in order to get data and make inferences about the total group.

Exercises and application

How well do you know your classmates?

1. Interview your classmates with the following questionnaire and analyze the necessary statistics to make inferences about all the students in the same school year in your school.

- How old are you?
- What's your gender?

How do you get to school?
2. Define age strata.
3. Classify gender with numbers: feminine $=1$, masculine $=2$
4. Write down the means to get to school and number them in order to build strata.

CONTENT DELIVERY

Start: Check students'
population study. Ask for a final report on their findings.
Development: Have students perform a major population study using the activity in the Exercises and application section.

Closing: Students will get the mean, median, mode and range and later they will present their findings.

SKILLS DEVELOPMENT

Reading skills: Interpreting statements.
Mathematical skills: Understanding and using symbolic expressions.

Reasoning skills: Reasoning quantitatively, discovering relations.

EVALUATION OF CONTENT

Check students' results and procedures to get the mean, median, mode and range.

SESSION INFORMATION

Week: 8

Sessions: 36-40
EVALUATION

CONTENT DELIVERY

Start: Students answer pages 38 and 39 prior to taking the unit assessment. Go through the answers in total class, guide students to remember core information of the unit.

Development: Students are to take the unit assessment. You can find it in this teacher's guide, pages 147 to 150, along with the answer key.

Closing: Check students' assessments, record scores and provide with feedback. You might want to use the attendance and evaluation formats that you can find in this teacher's guide, pages 175 and 176.

Evaluation

Solve the following problems individually. However, you can talk to other classmates about the procedures you will follow and check the necessary lessons before you actually answer.

1. The square of a number plus the same number is 240 . What's the number? Explain why

a) 12	b) 15	c) 25	d) 35

2. Analyze the information and answer the questions. Mr. Brown bought a piece of land whose length triples its width and its area is $1200 \mathrm{~m}^{2}$. He will use the land to build a conference hall whose area will be $800 \mathrm{~m}^{2}$.
a) How long is each side? $60 \times 20 \mathrm{~m}$.
b) Inside the piece of land there will be a cafeteria whose width triples its length and will be $75 \mathrm{~m}^{2}$. How long will each side be in the cafeteria? $15 \times 5 \mathrm{~m}$
c) The bathroom will be a quadrangular room of 5 m each side. What's the area of the bathroom? $25 \mathrm{~m}^{2}$
d) What's the area that will be left free? $1100 \mathrm{~m}^{2}$
e) What mathematical operations do you need to do in order to find the available space?
f) Which of the following algebraic expressions represents the area of the cafeteria and the bathroom?

- $3 x^{2}=105$

The area of the cafeteria and bathroom is subtracted from the size of the original piece of land, that is $1200-100=1100 \mathrm{~m}^{2}$

- $3 x^{2}+5 x-100=0$

$$
\text { - } x^{2}=75
$$

g) If the conference hall is reduced 100 m 2 , is it possible to build a parking lot whose area doubles the one of the cafeteria? Explain your answer.
3. In the following shapes, determine the length of the angle x you see:
\qquad
b) $x=$

4. Determine if the following triangles are similar and explain why

They are similar because $\frac{\overline{A B}}{\overline{A B}}=\frac{\overline{A_{1} C_{1}}}{\overline{A_{1} B_{1}}}$ and $\frac{\overline{A C}}{\overline{B C}}=\frac{\overline{A_{1} C_{1}}}{\overline{B_{1} C_{1}}}$
\square

5. Which of the following pieces of information corresponds to direct proportionality?

a)	Time (\mathbf{h})	3	4	5	6
	Distance $(\mathbf{k m})$	240	320	400	480

b)

6. Mathias throws a stone vertically, it reaches its highest point in meters according to the time measured in seconds.

The function that describes such a situation is: $h(t)=-t^{2}+4 t$
What's the highest point that the stone can get?
a) 2 m
b) 3 m
c) 4 m
d) 5 m
7. How long does it take for the stone to reach the highest point?
$\begin{array}{llll}\text { a) } 2 \mathrm{sec} & \text { b) } 3 \mathrm{sec} & \text { c) } 4 \mathrm{sec} & \text { d) } 5 \mathrm{sec}\end{array}$
8. How high is the stone in the first second?

a) 1 m	b) 2 m	c) 3 m	d) 3.5 m

9. How high is the stone in the third second?

a) 2 m	b) 2.5 m	c) 3 m	d) 3.5 m

10. How well do you know your teachers?

Interview your teachers with the following questionnaire and analyze statistically the data
you get to make inferences about all of the teachers in your school.
a) Classify two strata: Science $=1$, Social Studies $=2$
b) Separate them in age strata
c) Classify gender by number.
d) Classify how they get to school by numbers to define strata

- What studies do you have?
- How old are you?
- What's your gender?
- How do you get to school?

Answers will vary according to the data.

SESSION INFORMATION
Week: 8
Sessions: 36-40
EVALUATION

CONTENT DELIVERY

Start: Students answer pages 38 and 39 prior to taking the unit assessment. Go through the answers in total class, guide students to remember core information of the unit.

Development: Students are to take the unit assessment. You can find it in this teacher's guide, pages 147 to 150, along with the answer key.

Closing: Check students assessments, record scores and provide with feedback. You might want to use the attendance and evaluation formats that you can find in this teacher's guide, pages 175 and 176.

[^0]: In other words, triangles $\triangle A B C$ and $\triangle D E F$ will be similar if sides $A B, B C$ and $D F, E F$ are proportional and if $\Varangle C A B=\Varangle F D E$, where $\Varangle C A B \geq \npreceq B C A$ and $\Varangle F D E \geq \npreceq D E F$.

